综合资源展示 综合资源展示

最小化 最大化
«返回

Random subspace based ensemble sparse representation

  • 详细信息
标题: Random subspace based ensemble sparse representation
资源摘要: Publication date: February 2018
Source:Pattern Recognition, Volume 74

Author(s): Jing Gu, Licheng Jiao, Fang Liu, Shuyuan Yang, Rongfang Wang, Puhua Chen, Yuanhao Cui, Junhu Xie, Yake Zhang

In this paper, a new random subspace based ensemble sparse representation (RS_ESR) algorithm is proposed, where the random subspace is introduced into sparse representation model. For high-dimensional data, the random subspace method can not only reduce dimension of data but also make full use of effective information of data. It is not like traditional dimensionality reduction methods that may lose some information of original data. Additionally, a joint sparse representation model is emloyed to obtain the sparse representation of a sample set in the low dimensional random subspace. Then the sparse representations in multiple random subspaces are integrated as an ensemble sparse representation. Moreover, the obtained RS_ESR is applied in classical clustering and semi-supervised classification. The experimental results on different real-world data sets show the superiority of RS_ESR over traditional methods.





资源原始URL http://rss.sciencedirect.com/action/redirectFile?&zone=main¤tActivity=feed&usageType=outward&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DGatewayURL%26_origin%3DIRSSSEARCH%26_method%3DcitationSearch%26_piikey%3DS0031320317303679%26_version%3D1%26md5%3Dc69c593cdd49a582d07334c0cce408dd
资源来源机构: Elsevier
资源来源机构URL: http://rss.sciencedirect.com/getMessage?registrationId=JDGJJEGKQFGSKEGNLDHNJKHNJHIJLHKQSEIOJMJPSO
来源机构所属国家: 其他
来源机构性质:
您还没有登录。 请先登录再使用本系统。
您还没有登录。 请先登录再使用本系统。