综合资源展示 综合资源展示

最小化 最大化
«返回

FrameSTEP: A framework for annotating semantic trajectories based on episodes

  • 详细信息
标题: FrameSTEP: A framework for annotating semantic trajectories based on episodes
资源摘要: Publication date: February 2018
Source:Expert Systems with Applications, Volume 92

Author(s): Tales P. Nogueira, Reinaldo B. Braga, Carina T. de Oliveira, Hervé Martin

We are witnessing an increasing usage of location data by a variety of applications. Consequently, information systems are required to deal with large datasets containing raw data to build high level abstractions. Semantic Web technologies offer powerful representation tools for pervasive applications. The convergence of location-based services and Semantic Web standards allows an easier interlinking and annotation of trajectories. However, due to the wide range of requirements on modeling mobile object trajectories, it is important to define a high-level data model for representing trajectory episodes and contextual elements with multiple levels of granularity and different options to represent spatial and temporal extents, as well as to express quantitative and qualitative semantic descriptions. In this article, we focus on modeling mobile object trajectories in the context of Semantic Web. First, we introduce a new version of the Semantic Trajectory Episodes (STEP) ontology to represent generic spatiotemporal episodes. Then, we present FrameSTEP as a new framework for annotating semantic trajectories based on episodes. As a result, we combine our ontology, which can represent spatiotemporal phenomena at different levels of granularity, with annotation algorithms, which allow to create instances of our model. The proposed spatial annotation algorithm explores the Linked Open Data cloud and OpenStreetMap tags to find relevant types of spatial features in order to describe the environment where the trajectory took place. Our framework can guide the development of future expert systems in trajectory analysis. It enables reasoning about knowledge gathered from large trajectory data and linked datasets in order to create several intelligent services.





资源原始URL http://rss.sciencedirect.com/action/redirectFile?&zone=main¤tActivity=feed&usageType=outward&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%3F_ob%3DGatewayURL%26_origin%3DIRSSSEARCH%26_method%3DcitationSearch%26_piikey%3DS0957417417306796%26_version%3D1%26md5%3D38bd91c19ec987bb6df2429ab4a8e759
资源来源机构: Elsevier
资源来源机构URL: http://rss.sciencedirect.com/getMessage?registrationId=JDGJJEGKQFGSKEGNLDHNJKHNJHIJLHKQSEIOJMJPSO
来源机构所属国家: 其他
来源机构性质:
您还没有登录。 请先登录再使用本系统。
您还没有登录。 请先登录再使用本系统。